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Abstract

In this paper we develop Bayesian inference based on singly imputed partially synthetic data,
when the original data are derived from a multiple linear regression model. We assume that the
synthetic data are generated by using two methods: plug-in sampling, where unknown parameters
in the data model are set equal to observed values of their point estimators based on the original
data, and synthetic data are drawn from this estimated version of the model; posterior predictive
sampling, where an imputed posterior distribution of the unknown parameters is used to generate
a posterior draw, which in turn is plugged in the original model to beget synthetic data. Simulation
results are presented to demonstrate how the proposed methodology performs compared to the
theoretical predictions. We outline some ways to extend the proposed methodology for certain
scenarios where the required set of conditions do not hold.

Keywords: Partially synthetic data, Pivotal quantity, Plug-in sampling, Posterior predictive sam-
pling.

*Department of Mathematics and Statistics, University of Maryland Baltimore County, Baltimore, MD,
USA, mailto:guin1@umbc.edu

†Center for Statistical Research and Methodology, U.S. Census Bureau, Washington, DC 20233, USA,
and Department of Mathematics and Statistics, University of Maryland Baltimore County, Baltimore, MD,
USA, mailto:anindya@umbc.edu

‡Center for Statistical Research and Methodology, U.S. Census Bureau, Washington, DC 20233, USA,
and Department of Mathematics and Statistics, University of Maryland Baltimore County, Baltimore, MD,
USA, mailto:sinha@umbc.edu

Disclaimer: This article is released to inform interested parties of ongoing research and to encourage
discussion of work in progress. The views expressed are those of the authors and not those of the U.S.
Census Bureau.

1

mailto:guin1@umbc.edu
mailto:anindya@umbc.edu
mailto:sinha@umbc.edu


1 Introduction
Statistical disclosure control (SDC) methodology aims to suitably modify a dataset prior to its
release so that the modified dataset does not disclose confidential information about the individual
units that contributed their information to the dataset (for example, survey respondents). At the
same time, it is also a goal that a dataset that has been modified using SDC methodology would still
be useful for drawing inference on the relevant population. SDC methods include data swapping,
additive and multiplicative noise, top and bottom coding, and also the creation of synthetic data.
The synthetic data approach is a popular form of SDC methodology where (all or part of) the real
data deemed confidential are not released, but are instead used to create synthetic data which are
released.

Generally, there are two types of synthetic data discussed in the literature: fully synthetic
data and partially synthetic data, and methodology for drawing inference based on synthetic data
has been developed using concepts of multiple imputation (Rubin, 1987). In fully synthetic data
methodology, all units in the population not selected in the sample are treated as missing, and are
multiply imputed based on the information from sampled units, to create multiple synthetic pop-
ulations. A sample is then drawn from each synthetic population, and these samples are released
to the public. This approach was suggested by Rubin (1993), and methods for drawing inference
based on the synthetic data generated using this approach were developed by Raghunathan et al.
(2003). In the partially synthetic data approach, the released data comprise only the originally
sampled units, but any responses deemed to be confidential are replaced by multiple imputations.
For any particular variable, the responses could be deemed as confidential for some or all respon-
dents. This approach was suggested by Little (1993), and methods for drawing inference based on
synthetic data under this approach were developed by Reiter (2003). We refer to the monograph
by Drechsler (2011) for a thorough discussion on synthetic data methodology.

In comparison with the standard SDC methods, multiple imputation techniques presents many
advantages dealing with many real data problems that other methods cannot. It preserves the joint
distribution of the original data offering a better quality analysis; is applicable to both categorical
and continuous variables; released fully synthetic datasets gives a very small disclosure risk; with
partially synthetic datasets generation one may only synthesize the records at risk, maintaining
intact the records that have no need to be protected; it allows the possibility to impute missing
values before generating synthetic datasets having no need to give up on some records; preserves
linear constraints; allows the analyst to decide if valid results will be given from the synthetic
data based on the meta-data information. Some drawbacks exist as well. Since it is a perturbation
method there is a question on the utility limit of the data and only the statistical properties gathered
by the model are preserved (An and Little, 2007; Drechsler, 2010).

There are several examples where partially synthetic data products have been produced based
on major data sources. Some examples in the United States include the Survey of Income and
Program Participation (Abowd et al., 2006; Benedetto et al., 2013), the American Community Sur-
vey Group Quarters data (Hawala, 2008), OnTheMap data on where workers live and where they
work (Machanavajjhala et al., 2008), and the Longitudinal Business Database (Kinney et al., 2011;
Kinney et al., 2014). To obtain valid inference on population quantities using synthetic data, the
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current practice requires multiple synthetic datasets to be released, but there are cases where it is
prudent to release only a single partially synthetic dataset. For example, the Synthetic Longitu-
dinal Business Database, accessible through the VirtualRDC at Cornell University, is a partially
synthetic version of the U.S. Census Bureau’s Longitudinal Business Database (LBD). As dis-
cussed in Kinney et al. (2011) and Kinney et al. (2014), the decision was made to release only a
single version of the LBD in the synthetic file, instead of multiple copies, to avoid the perception
of high disclosure risk. Similarly, in the application of partially synthetic data to American Com-
munity Survey Group Quarters data presented by Hawala (2008), only a single synthetic dataset is
released, because of the concern that releasing multiple synthetic copies may increase disclosure
risk.

The primary purpose of this work is to develop Bayesian analyses for drawing inference based
on a singly imputed partially synthetic dataset under the multiple linear regression (MLR) model.
This synthetic data problem fits into the framework of partially synthetic data, and hence the
methodology of Reiter (2003) can be used to obtain approximately valid inference if the sam-
ple size is sufficiently large and the number of multiply imputed synthetic datasets available is
m ≥ 10, but it breaks down when m = 1. However, given the specific structure in this problem, we
shall instead exploit the model structure to derive Bayesian inference for the parameters. While
the methodology we derive is specific to the problem at hand, it yields exact inference for both
large and small samples using the singly imputed synthetic dataset that is available. We essentially
extend the work done in Klein and Sinha (2015b) and Klein and Sinha (2015a) that developed
exact parametric inferential methods based on singly imputed synthetic data for the MLR model,
to the Bayesian domain.

Throughout, we would be dealing with the case of a standard MLR model involving a sensitive
response variable y and a p × 1 dimensional vector of non-sensitive predictors x. We assume that

y1, . . . , yn are independent such that yi ∼ N(x′iβ, σ
2) (1)

where x1, . . . ,xn are fixed p × 1 vectors, and β and σ2 are both unknown. Thus the original data
consist of {(yi,xi) : i = 1, . . . , n}. We define y = (y1, . . . , yn)′ as the n × 1 dimensional vector of
response variables, and X = [x1 · · ·xn]′ as the n × p dimensional matrix of predictor variables,
and we assume that rank(X) = p < n. Based on the original data, β̂ = b = (X ′X)−1X ′y is
the maximum likelihood estimator (MLE) and uniformly minimum variance unbiased estimator
(UMVUE) of β, and σ̂2 = RSS/(n − p) is the UMVUE of σ2 where RSS = (y − Xb)′(y −
Xb) = y′(In −PX)y with Ik as the k-dimensional identity matrix and PX = X(X ′X)−1X ′ is the
orthogonal projection matrix to the column space ofX . Furthermore, b and RSS are independently
distributed such that

b ∼ Np(β, σ2(X ′X)−1])

RSS ∼ σ2χ2
n−p

(2)

When the original data are observed, b and RSS are jointly sufficient for β and σ2.
Since y is sensitive and hence cannot be released, instead it is replaced with a singly imputed

synthetic copy which is released. The synthetic data is generated by two methods: plug-in sampling
and posterior predictive sampling. In the former method, parameter estimates are plugged in the
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MLR model to generate synthetic data. In the latter one, posterior draws of the parameter are
generated using an imputed prior, which are then fed into the MLR model to generate synthetic
data. The development builds on the exact likelihood based procedures developed in Klein and
Sinha (2015b) and Klein and Sinha (2015a).

Plug-in Sampling. The basic mechanism for generating synthetic data via plug-in sampling (PIS)
is described as follows: let Y = (y1, . . . ,yn) be the original confidential data, which are jointly
distributed according to the probability density function (pdf) fθ(Y ), where θ is the unknown
(scalar or vector) parameter. To generate partially synthetic data, let θ̂ = θ̂(Y ) be the observed
value of a point estimator of θ, and we plug it into the joint pdf of Y . The resulting pdf, with
the unknown θ replaced by the observed value θ̂(Y ) of the point estimator, is denoted by fθ̂. The
singly imputed synthetic data, denoted by Z, are then generated by drawing from the joint pdf fθ̂.

Posterior Predictive Sampling. An alternative method to generate partially synthetic data is to use
posterior predicitve sampling (PPS) which proceeds as follows: suppose that Y = (y1, . . . ,yn) are
the original data which are jointly distributed according to the pdf fθ(Y ), where θ is the unknown
(scalar or vector) parameter. Assume a prior π(θ) for θ, then the imputed posterior distribution
of θ given Y is obtained as π(θ | Y ) ∝ π(θ) fθ(Y ), and used to draw θ∗ (known as a posterior
draw). Next, for the posterior draw of θ, a corresponding replicate of Y is generated, namely
Z = (z1, . . . ,zn)′ drawn from the pdf fθ∗(X).

The organization of the paper is as follows. In Section 2, we carry out Bayesian inference
based on singly imputed synthetic data generated using the plug-in sampling method. In Section
3, we derive Bayesian inference based on singly imputed synthetic data generated using posterior
predictive sampling. Here we use a diffuse form of the imputer prior π(β, σ2), involving a hyperpa-
rameter α. In Section 4 we present results of some simulation studies. In Section 5 we discuss the
situation when part of the y data is sensitive, referred to as partially sensitive data. We discuss two
methods of generating the synthetic data, one based on using only the sensitive part of the data to
estimate model parameters and the other based on the entire data. Again, two methods of synthetic
data generation are explained, based on plug-in sampling and posterior predictive sampling, and
resulting Bayesian analysis are indicated.

We end this section with an observation regarding the existence of sufficient statistics in the
context of synthetic data that we will use as our foundation, courtesy of Klein and Sinha (2015b).

Lemma 1.1. Suppose that when the original data Y are observed, T (Y ) is a sufficient statistic
for the unknown parameter θ in the original model fθ(Y ). Then when the synthetic data Z are
generated from fθ′(Y )(Z) (where θ′(Y ) is a stand-in for θ derived from the original data Y ), T (Z)
is a sufficient statistic for θ.

Proof. Suppose based on the original data Y , T (Y ) is a sufficient statistic for the unknown pa-
rameter θ in the original model fθ(Y ). Then we can write fθ(Y ) = h(Y )gθ[T (Y )], and the pdf of
the synthetic data Z is∫

fθ′(Y )(Z) fθ(Y )dY =

∫
gθ′(Y )[T (Z)]h(Z) fθ(Y )dY = h(Z)

∫
gθ′(Y )[T (Z)] fθ(Y )dY (3)

�
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2 Plug-In Sampling method
The singly imputed synthetic data in this case consist of a single synthetic version of y = (y1, . . . , yn)′,
which is denoted as z = (z1, . . . , zn)′, and obtained by drawing

z1, . . . , zn independently such that zi ∼ N
(
x′ib,

RSS
n − p

)
(4)

Thus the released data will be of the form {(zi,xi) : i = 1, . . . , n}, and our goal is to discuss
Bayesian inference on β and σ2 based on this released data.

It is convenient to identify the latent structure of the pseudo randomization involved in the
released data. For what follows we would write identities that are sometimes algebraic but also
sometimes distributional. The exact case should be clear from the context. Specifically, we could
write

z
d
= Xβ̂ + σ̂W

where W = (w1, . . . ,wn)′ ∼ Nn(0, In) with wi
iid
∼ N(0, 1). Then by Lemma 1.1 the sufficient statis-

tics based on the released data are

b∗ = (X ′X)−1X ′z
d
= β̂ + σ̂(X ′X)−1X ′W

d
= β̂ + σ̂CU1

RSS∗ = z′(In − PX)z d
= σ̂2W ′(In − PX)W d

= σ̂2V
(5)

where U1 ∼ Np(0, Ip) and V ∼ χ2
n−p, and C is a full rank square root of (X ′X)−1 such that

CC ′ = (X ′X)−1. It is easy to check that b∗ is independent of RSS∗ by using the following result:
If y ∼ Np(µ,Σ), Bk×p and Ap×p are constant matrices, then By and y′Ay are independent if and
only ifBΣA = O. Next, we can write

b∗
d
= β̂ + σ(σ̂/σ)CU1

d
= β̂ + σ

√
ψCU1

RSS∗ d
= σ2(σ̂/σ)2V1

d
= σ2ψV

(6)

where ψ = (σ̂/σ)2 is a latent quantity. From (2), we have β̂ d
= β + σCU2 where U2 ∼ Np(0, Ip)

independent of U1 and hence from (6) conditional on the parameters, we could write

b∗
d
= β + σ

√
1 + ψCU3

where U3 ∼ Np(0, Ip). Thus the likelihood based on the released data for the parameters θ =

(β, σ2, ψ) is given by

L(β, σ2, ψ | b∗,RSS∗) = φp(b∗;β, σ2(1 + ψ)(X ′X)−1) h(RSS∗; n − p, σ2ψ) (7)

where φk(w;µ,Σ) is the density of w ∼ Nk(µ,Σ) and h(v; d, s) is the density of v ∼ s χ2
d. For

full Bayesian specification, we need priors on the unknown quantities (β, σ2, ψ). The prior on ψ
is naturally imposed by the original MLR model and the single imputation mechanism. Thus, a
priori

ψ ∼ π(ψ) = h(ψ; n − p, (n − p)−1)
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For Bayesian inference on the other unknown parameters we assume non-informative improper
priors and assume that all unknown quantities are a priori independent. Specifically, we assume

π(β, σ2) = π(β)π(σ2)

where π(β) ∝ 1 and π(σ) ∝ σ−δ and hence the induced prior on σ2 is π(σ2) ∝ (σ2)−
δ+1

2 for δ > 0.

The posterior distribution can be computed in the following manner:

π(β, σ2, ψ | b∗,RSS∗) ∝ L(β, σ2, ψ | b∗,RSS∗) π(ψ) π(β, σ2)

π(β, σ2, ψ | b∗,RSS∗) = π(β | b∗,RSS∗, σ2, ψ) π(σ2 | b∗,RSS∗, ψ) π(ψ | b∗,RSS∗)

The conditional posteriors follow from observing that from the above two equations the prod-
uct of the likelihood of the parameters and their priors break up into three conditional posterior
distributions as follows

β | b∗,RSS∗, σ2, ψ ∼ Np

(
b∗, σ2(1 + ψ)(X ′X)−1

)
(8)

σ2 | b∗,RSS∗, ψ ∼ Scale-inv-χ2
(
n − p + δ − 1,

RSS∗

ψ(n − p + δ − 1)

)
(9)

ψ ∼ (n − p)−1χ2
n−p+δ−1 (10)

The posterior distributions are proper as long as n > max{p, p − δ + 1}.

We observe that
σ2ψ

RSS∗
| RSS∗, ψ ∼ inv-χ2

n−p+δ−1 so that

σ2ψ

RSS∗
∼ inv-χ2

n−p+δ−1 (11)

unconditionally and
σ2ψ

RSS∗
is independent of the data and ψ. Here we use the fact that if X ∼

Scale-inv-χ2(ν, τ2) then
X
τ2ν
∼ inv-χ2

ν.

Marginal Posterior of parameters

β | b∗,RSS∗, ψ ∼ tn−p+δ−1

(
b∗,

RSS∗(1 + ψ)
ψ(n − p + δ − 1)

(X ′X)−1
)

π(σ2 | RSS∗) ∝ (σ2)−
n−p+δ+1

2 K0


√

(n − p)RSS∗

σ2


where Kν(z) is the modified Bessel function of the second kind as defined in Tweedie (1957).

Marginal Distribution of data

π(b∗,RSS∗) =

∫
π(b∗,RSS∗, ψ | β, σ2) π(β, σ2) dβ dσ2dψ ∝ (RSS∗)−

δ+1
2
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Posterior Predictive Density

Let D be the original dataset and Dnew be the new dataset with (b̃∗, R̃SS
∗

) as the sufficient statistic.

π(Dnew | D) =

∫
π(Dnew | β, σ

2, ψ) π(β, σ2, ψ | D) dβ dσ2 dψ

∝ (R̃SS
∗

)
n−p

2 −1
∫  (b̃∗ − b∗)′(X ′X)(b̃∗ − b∗)

2 (1 + ψ)
+

R̃SS
∗

+ RSS∗

ψ

−
2n−p+δ−1

2 e−(n−p)ψ

ψ2(1 + ψ)
p
2

dψ

Bayes Estimators of β and σ2

The Bayes estimators for the parameters are calculated as follows:

β̂BAYES = E(β | b∗,RSS∗) = Eψ Eσ2 E(β | b∗,RSS∗, σ2, ψ) = Eψ Eσ2(b∗) = b∗

σ̂2
BAYES = E(σ2 | b∗,RSS∗) = Eψ E(σ2 | b∗,RSS∗, ψ) = Eψ( RSS∗

ψ(n−p+δ−3) ) = RSS∗
(n−p+δ−3) Eψ( 1

ψ
) =

(n − p)RSS∗

(n − p + δ − 3)2

as long as n > max{p, p − δ + 3}. Here we use the result that if X ∼ Scale-inv-χ2(ν, τ2) then

E(X) =
τ2ν

ν − 2
for ν > 2.

Credible Sets for β and σ2

We will compute pivots (we are misusing the definition a bit, we merely mean a function of data
and parameters whose posterior distribution does not depend on parameters) for σ2 and β. Given
that we have closed form posterior expressions in the above equations, we can write down exact
posterior intervals in terms of credibility and coverage.

A pivot for σ2 can be defined as

V B
RSS∗

σ2

whose distribution is calculated as
V ∼ V1 × V2

where (n − p)V1, V2 are independent χ2
n−p+δ−1 random variables (r.v.’s) due to (11). A (1 − γ) level

credible set for σ2 based on V = RSS∗/σ2 is[
RSS∗

bn,p,δ;γ
,

RSS∗

an,p,δ;γ

]
where an,p,δ;γ and bn,p,δ;γ are any two constants that satisfy 1 − γ = P(an,p,δ;γ ≤ V ≤ bn,p,δ;γ). The

length of the credible interval is RSS∗
(

1
an,p,δ;γ

−
1

bn,p,δ;γ

)
.
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Next we define a pivot for β. From (8)

C−1/2(β − b∗)
√

RSS∗
d
= Y1

where Y1
d
=

√
1

V2

(
1

V1
+ 1

)
U such that V1, V2 are defined as before and are independent of U ∼

Np(0, Ip). Finally we define the pivot for β as

T 2 B
(β − b∗)′(X ′X)(β − b∗)

RSS∗

whose distribution is given by

T 2 ∼
p

n − p + δ − 1

 n − p
χ2

n−p+δ−1

+ 1

 Fp, n−p+δ−1

where the χ2 and F-distributions above are independent. A (1 − γ) level credible ellipsoid for β
based on T 2 is given by

{β : T 2 ≤ cn,p,δ;γ}

where cn,p,δ;γ satisfies 1 − γ = P(T 2 ≤ cn,p,δ;γ). The volume of the credible ellipsoid is

Vβ(z,X) =
πp/2

Γ
(

p
2 + 1

) (
cn,p,δ;γRSS∗

)p/2 ∣∣∣X ′X
∣∣∣−1/2

The above expression follows from the fact that ifA is a p × p dimensional positive definite (PD)
matrix, a ∈ Rp, and C > 0, then the volume of the ellipsoid {b ∈ Rp : (b − a)′A(b − a) ≤ C} is
[πp/2/Γ( p

2 + 1)]Cp/2
∣∣∣A∣∣∣−1/2

.

It is worth noting here that it is easy to show that none of the credible intervals are confidence
intervals.

Remark 2.1. If one is interested in the credible set of a single regression coefficient or more
generally in the credible set of a vector of linear combination of β, namely,Aβ = η whereA is a
k × p dimensional matrix with rank(A) = k ≤ p, we define T 2

η = (η −Ab∗)′{A(X ′X)−1A′}−1(η −
Ab∗)/RSS∗, and proceed by noting that

T 2
η ∼

k(n − p)
n − p + δ − 1

 1
χ2

n−p+δ−1

+ 1

 Fk, n−p+δ−1

where the χ2 and F-distributions above are independent.
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3 Posterior Predictive Sampling method
We now proceed as follows to generate the singly imputed synthetic data z = (z1, . . . , zn) under
posterior predictive sampling. We start from a joint prior distribution π(β, σ2) ∝ (σ2)−

α+1
2 for

β ∈ Rp, σ2 > 0 and α > 0 resulting in the posterior

σ2 | b,RSS ∼ Scale-inv-χ2
(
n − p + α − 1,

RSS
n − p + α − 1

)
(12)

β | b,RSS, σ2 ∼ Np

(
b, σ2(X ′X)−1

)
(13)

We assume throughout that n + α > p + 1. We first draw (β∗, σ∗) from the above posterior,
and then independently zi ∼ N(x′iβ

∗, (σ∗)2), i = 1, . . . , n. As before, b∗ = (X ′X)−1X ′z and
RSS∗ = (z −Xb∗)′(z −Xb∗), which are jointly sufficient for (β, σ2) by Lemma 1.1.

Similarly as in the last section we can write

z
d
= Xβ∗ + σ∗W

whereW ∼ Nn(0, In). Then the sufficient statistics based on the released data can be written as

b∗ = (X ′X)−1X ′z
d
= β∗ + σ∗(X ′X)−1X ′W

d
= β∗ + σ∗CU1

RSS∗ = z′(In − PX)z d
= σ∗2W ′(In − PX)W d

= σ∗2V
(14)

where U1 ∼ Np(0, Ip), V ∼ χ2
n−p, C is such that CC ′ = (X ′X)−1, b∗ and RSS∗ are independent.

Thus, we get
b∗

d
= β∗ + σ(σ∗/σ)CU1

d
= β∗ + σ

√
ψCU1

RSS∗ d
= σ2(σ∗/σ)2V d

= σ2ψV
(15)

where ψ = (σ∗/σ)2 is a latent quantity. From (13) and (2), we have

β∗
d
= b + σ∗CU0

d
= β + σCU 0 + σ∗CU0

d
= β + σ

√
1 + ψCU2

where U0,U
0,U2 ∼ Np(0, Ip) are all independent of each other and of U1 and hence from (15)

conditional on the parameters, we could write

b∗
d
= β + σ

√
1 + 2ψCU3

where U3 ∼ Np(0, Ip). Thus the likelihood based on the released data for the parameters θ =

(β, σ2, ψ) is given by

L(β, σ2, ψ | b∗,RSS∗) = φp(b∗;β, σ2(1 + 2ψ)(X ′X)−1) h(RSS∗; n − p, σ2ψ) (16)

The prior on ψ is naturally imposed by the original MLR model and the single imputation method.
From (12), RSS/σ∗2 | RSS ∼ χ2

n−p+α−1 and thus unconditionally RSS/σ∗2 ∼ χ2
n−p+α−1 which also

implies RSS/σ∗2 is independent of RSS. Hence

ψ =
σ∗2

σ2 =
RSS/σ2

RSS/σ∗2
d
=

n − p
n − p + α − 1

Fn−p, n−p+α−1
d
= β′

(
n − p

2
,

n − p + α − 1
2

)
9



For Bayesian inference on the other unknown parameters we assume the same independent non-
informative improper priors as before. Thus for δ > 0 we assume

π(β, σ2) = π(β)π(σ2) ∝ (σ2)−
δ+1

2

The conditional posteriors can be determined similarly as in the last section as follows:

β | b∗,RSS∗, σ2, ψ ∼ Np

(
b∗, σ2(1 + 2ψ)(X ′X)−1

)
(17)

σ2 | b∗,RSS∗, ψ ∼ Scale-inv-χ2
(
n − p + δ − 1,

RSS∗

ψ(n − p + δ − 1)

)
(18)

ψ ∼ β′
(
n − p + δ − 1

2
,

n − p + α − δ

2

)
(19)

The posterior distributions are proper as long as n > max{p, p − δ + 1, p − α + 1, p − α + δ}.

Here again as before we can see that
RSS∗

σ2ψ
∼ χ2

n−p+δ−1 and thus
RSS∗

σ2ψ
is independent of the

data and ψ.

Marginal Posterior of parameters

β | b∗,RSS∗, ψ ∼ tn−p+δ−1

(
b∗,

RSS∗(1 + 2ψ)
ψ(n − p + δ − 1)

(X ′X)−1
)

π(σ2 | RSS∗) ∝ (σ2)−
n−p+δ+1

2 U
(
2n − 2p + α − 1

2
, 1,

RSS∗

2σ2

)
where U(a, b, x) is the confluent hypergeometric function of the second kind.

Marginal Distribution of data

π(b∗,RSS∗) =

∫
π(b∗,RSS∗, ψ | β, σ2) π(β, σ2) dβ dσ2dψ ∝ (RSS∗)−

δ+1
2

Posterior Predictive Density

π(Dnew | D) =

∫
π(Dnew | β, σ

2, ψ) π(β, σ2, ψ | D) dβ dσ2 dψ

∝ (R̃SS
∗

)
n−p

2 −1
∫  (b̃∗ − b∗)′(X ′X)(b̃∗ − b∗)

2 (1 + 2ψ)
+

R̃SS
∗

+ RSS∗

ψ

−
2n−p+δ−1

2 (1 + ψ)−2n−2p+α−1

ψ2(1 + 2ψ)
p
2

dψ
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Bayes Estimators of β and σ2

The Bayes estimators for the parameters are calculated as follows:

β̂BAYES = E(β | b∗,RSS∗) = Eψ Eσ2 E(β | b∗,RSS∗, σ2, ψ) = Eψ Eσ2(b∗) = b∗

σ̂2
BAYES = E(σ2 | b∗,RSS∗) = Eψ E(σ2 | b∗,RSS∗, ψ) = Eψ( RSS∗

ψ(n−p+δ−3) ) = RSS∗
(n−p+δ−3) Eψ( 1

ψ
) =

(n−p+α−δ)RSS∗

(n−p+δ−3)2

as long as n > max{p, p − δ + 3, p − α + 1, p − α + δ}. Here use the following facts: if X ∼ β′(α, β)
then X−1 ∼ β′(β, α) and E(X) = α

β−1 for β > 1.

Credible Sets for β and σ2

As
RSS∗

σ2ψ
is independent of ψ so a pivot for σ2 can be defined as

N B
RSS∗

σ2 =

(
RSS∗

σ2ψ

)
ψ = N1 × N2

where N1 ∼ χ
2
2ζ , N2 ∼ β

′(ζ, η) and N1 is independent of N2 where η =
n−p+α−δ

2 , ζ =
n−p+δ−1

2 .
A (1 − γ) level credible set for σ2 based on N = RSS∗/σ2 is[

RSS∗

bn,p,α,δ;γ
,

RSS∗

an,p,α,δ;γ

]
where an,p,α,δ;γ and bn,p,α,δ;γ are any two constants that satisfy 1 − γ = P(an,p,α,δ;γ ≤ N ≤ bn,p,α,δ;γ).

The length of the credible interval is RSS∗
(

1
an,p,α,δ;γ

−
1

bn,p,α,δ;γ

)
.

Let us now consider
T 2 B

(β − b∗)′(X ′X)(β − b∗)
RSS∗

We will compute the posterior distribution of T 2 | b∗,RSS∗. Observe that we can write

T 2 =

[
(β − b∗)′(X ′X)(β − b∗)

σ2(1 + 2ψ)

] [
σ2ψ

RSS∗

] [
1 + 2ψ
ψ

]
= T1 × T2 × T3

Now

(a) T1 | b
∗,RSS∗, σ2, ψ ∼ χ2

p and hence T1 ∼ χ2
p unconditionally. This also shows that T1 is

independent of (b∗,RSS∗, σ2, ψ) and thus T1 is independent of T2 and T3.

(b) T2 ∼ inv-χ2
2ζ and is independent of T3.

(c) T3 − 2 ∼ β′(η, ζ) or alternatively T3
d
= 1 + 1

M where M ∼ β(ζ, η). This is because if X ∼ β′(α, β)
then 1

X ∼ β
′(β, α) and 1

1+X ∼ β(β, α).
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Hence finally we see that T 2 is a pivot for β and

T 2 ∼
p

n − p + δ − 1
Fp, n−p+δ−1

(
1 +

1
M

)
where M ∼ β(ζ, η)

A (1 − γ) level credible ellipsoid for β based on T 2 is given by

{β : T 2 ≤ cn,p,α,δ;γ}

where cn,p,α,δ;γ satisfies 1 − γ = P(T 2 ≤ cn,p,α,δ;γ). The volume of the credible ellipsoid is

Vβ(z,X) =
πp/2

Γ
(

p
2 + 1

) (
cn,p,α,δ;γRSS∗

)p/2 ∣∣∣X ′X
∣∣∣−1/2

Remark 3.1. If one is interested in the credible set of a single regression coefficient or more
generally in the credible set of a vector of linear combination of β, namely,Aβ = η whereA is a
k × p dimensional matrix with rank(A) = k ≤ p, we define T 2

η = (η −Ab∗)′{A(X ′X)−1A′}−1(η −
Ab∗)/RSS∗, and proceed by noting that

T 2 ∼
k

n − p + δ − 1
Fk, n−p+δ−1

(
1 +

1
M

)
where M ∼ β(ζ, η)

4 Simulation studies
In order to conduct the simulation, the population distribution is taken to be the linear regression
model (1) with

p = 10, xi =



1
x1i

x2i

x3i

x4i

I(x5i = 2)
I(x5i = 3)
I(x5i = 4)
I(x5i = 5)
I(x5i = 6)



, β =



β1

β2

β3

β4

β5

β6

β7

β8

β9

β10



=



10
2
2
−3
−1
−2
1
2
2
4



, σ2 = 1. (20)

The regressor variables in xi are generated one time at the beginning of the simulation, and then
held fixed from one iteration to the next. We generate the regressor variables (all independently)
as follows:
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x1i ∼ N(1, 1), log x2i ∼ N(0, 1), x3i ∼ Exponential(mean = 1),

x4i ∼ Poisson(1), x5i =



1 with probability 0.2
2 with probability 0.1
3 with probability 0.2
4 with probability 0.2
5 with probability 0.2
6 with probability 0.1

Based on Monte Carlo simulation with 104 iterations, we compute an estimate of the coverage
probability, the volume or length (as appropriate) of the respective credible sets and the Bayes
estimators of the parameters, where in all cases, the level of credibility is set at 0.95.

Plug-In Sampling Tables 1, 2, 3 includes the simulation results for a plug-in sampling data where
the sample size n equals 500, 1000 and 10000 respectively for different values of the tuning param-
eter δ. Some interesting observations are in order. The coverage for σ2 gets slightly better initially
as we increase δ, starts worsening beyond δ ≥ 10, and at large values of δ it is significantly worse.
This effect is more prominent when n is small, in which case the coverage is not the best anyway
as is to be expected. The same effect is observed for the coverage of β though not as severe. The
coverage of β decreases at a much slower rate compared to that of σ2 with increasing δ. The
size of the credible sets shrink for both the parameters as n or δ increases. With decreasing n or
increasing δ there seems to be no effect on the Bayes estimator of β, while the Bayes estimator of
σ2 becomes slightly worse, which is what we expect since β̂BAYES does not involve δ while σ2

BAYES
has δ in the denominator. All of this suggests that there is a sweet spot for the choice of δ to ensure
maximum coverage along with the smallest possible size of the credible sets of the parameters. For
both σ2 and β, from Table 3 asymptotically the results imply that the Bernstein-von Mises theorem
holds, with the caveat that inference worsens with increasing δ, quicker for σ2 than for β. In the
asymptotic case, the credible sets are tighter and the Bayes estimators perform admirably for both
the parameters, as expected. The behavior of the coverage of σ2 and β with respect to different
values of δ in the case n = 500 (depicted by alternating dashes and dots), n = 1000 (depicted by
solid lines), asymptotic case n = 10000 (depicted by dashed lines) are represented in Figure 1(a)
and Figure 1(b) respectively.

Posterior Predictive Sampling The general trend of Bayesian inference for model parameters
observed under PIS is also mirrored when data is generated by posterior predictive sampling, as
illustrated in Tables 4, 5, 6, 7, 8 and 9. Overall for σ2, compared to PIS, the coverage is lower,
the credible interval is wider, but the Bayes estimator performs similarly well. For β, compared
to PIS, the coverage is similar, the Bayes estimator performs similarly well, but the volume of the
credible ellipsoid is one order of magnitude bigger. The interaction of the hyperparameter α and
tuning parameter δ is also pretty interesting to observe. Increasing α seems to have no effect on
the coverage of the parameters but the size of the credible sets narrow down marginally, although
asymptotically there seems to be no significant difference (as seen by comparing Tables 6 and 9).
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We should be able to find a combination of the two that yields the best inference. The inference
for β seems to be unaffected by the increase in α, except again for the fact that the credible set for
β contracts a bit. The behavior of the coverage of σ2 and β with respect to different values of δ
in the case n = 500 (depicted by alternating dashes and dots), n = 1000 (depicted by solid lines),
asymptotic case n = 10000 (depicted by dashed lines) are represented in Figures 1(c), 1(e) and
Figures 1(d), 1(f) respectively.

After assessing the results, the recommendation would be to use 2 ≤ δ ≤ 4.

The PIS method offers smaller radius of the confidence sets than the PPS method and also
gives estimates of the parameters closer to the ones obtained from the original data, despite giving
slightly higher levels of disclosure risk (Moura (2016)). So we have a trade off between data utility
and data privacy.

In general, the Bayesian posterior intervals, credible intervals and HPD intervals need not have
valid frequentist coverage. This is because the Bayesian intervals are not derived using a repeated
sampling paradigm; their objective is to characterize reasonable parameter values that conform
with the specific model and prior for a given situation. However, some researchers have advocated
a more principled approach to the practice where the Bayes intervals are calibrated to frequentist
calculations so that Bayesian statements can be rejected based on empirical tests. Such calibrated
Bayes approach (Rubin, 1984; Little, 2006) looks for reconciliation between the two paradigms.
Another approach for reconciliation (asymptotically) is to choose priors that provided credible
intervals with accurate frequentist coverage. Such priors are called Probability Matching Priors
(Datta and Ghosh, 1995).

Usually, Bayesian credible intervals have good frequentist properties provided the problem
admits some type of Bernstein-von Mises theorem. In the present case however, in the presence of
latent structure, such Bernstein-von Mises results may not be readily available. From the limited
empirical investigation it seems that the coverage of the credible intervals depends on the δ in the
prior even asymptotically. It will be interesting to determine the limits of coverage as δ > 0 varies.
We will pursue such investigation in the future.
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Table 1: Inference for β and σ2 for PIS data with n = 500

σ2 β
avg est Bayes avg est Bayes

δ cvg len est cvg vol est
0.2 0.953 0.360 1.011 0.953 1.064e-03 (10.002, 2.000, 2.000, -2.999, -1.000, -2.000, 0.997, 1.998, 1.998, 3.998)’
0.5 0.948 0.359 1.010 0.950 8.814e-04 (10.001, 1.999, 2.000, -3.000, -1.000, -2.000, 1.000, 2.000, 2.000, 4.000)’
0.8 0.952 0.359 1.009 0.950 8.248e-04 (9.998, 2.000, 2.000, -2.999, -1.001, -2.000, 1.006, 2.001, 2.002, 4.005)’
1 0.951 0.359 1.010 0.949 9.708e-04 (10.002, 2.001, 2.000, -3.000, -0.999, -2.004, 0.997, 1.995, 1.998, 3.998)’
2 0.951 0.357 1.005 0.949 8.054e-04 (10.000, 2.001, 2.000, -2.999, -0.999, -2.003, 0.998, 1.996, 1.998, 3.997)’
3 0.948 0.355 1.000 0.947 3.988e-04 (9.998, 2.000, 2.000, -3.000, -1.000, -2.001, 1.002, 1.998, 2.000, 3.997)’
4 0.945 0.353 0.996 0.946 6.732e-04 (9.997, 2.001, 2.001, -3.000, -0.999, -2.000, 1.002, 1.999, 2.001, 4.000)’

10 0.933 0.342 0.972 0.944 4.310e-04 (10.000, 2.000, 2.000, -3.001, -1.000, -2.002, 1.000, 2.002, 2.001, 4.001)’
20 0.863 0.326 0.934 0.931 4.779e-04 (10.001, 2.000, 2.001, -3.001, -1.001, -2.002, 1.000, 2.002, 2.003, 4.000)’
30 0.745 0.310 0.899 0.919 4.963e-04 (9.997, 2.000, 2.000, -2.999, -1.000, -2.000, 1.002, 2.001, 2.003, 4.000)’
50 0.426 0.282 0.834 0.898 3.861e-04 (10.000, 2.000, 2.001, -2.999, -1.001, -2.003, 1.002, 1.998, 1.998, 3.998)’
100 0.010 0.226 0.697 0.825 1.940e-04 (9.998, 2.000, 2.000, -3.000, -1.000, -2.000, 1.001, 2.000, 2.000, 4.000)’

Table 2: Inference for β and σ2 for PIS data with n = 1000

σ2 β
avg est Bayes avg est Bayes

δ cvg len est cvg vol est
0.2 0.951 0.251 1.006 0.949 2.475e-05 (10.002, 1.999, 2.000, -3.000, -1.000, -2.001, 1.000, 1.999, 1.999, 4.001)’
0.5 0.953 0.251 1.004 0.951 2.130e-05 (10.002, 1.999, 2.000, -3.000, -1.000, -2.000, 0.999, 1.997, 1.999, 4.000)’
0.8 0.951 0.250 1.003 0.953 2.190e-05 (10.000, 2.000, 2.000, -3.000, -1.000, -1.998, 1.000, 2.000, 2.000, 4.000)’
1 0.950 0.251 1.004 0.951 2.215e-05 (10.002, 1.999, 2.000, -3.000, -1.000, -2.001, 0.998, 1.998, 1.997, 3.997)’
2 0.949 0.250 1.004 0.946 2.362e-05 (10.000, 2.000, 2.000, -3.001, -1.001, -2.000, 1.002, 2.000, 2.000, 3.999)’
3 0.949 0.250 1.001 0.947 2.472e-05 (10.000, 2.000, 2.000, -3.000, -1.000, -1.998, 1.001, 2.001, 1.990, 3.997)’
4 0.948 0.248 0.997 0.949 2.174e-05 (10.000, 2.000, 2.000, -3.000, -1.000, -1.998, 0.999, 2.000, 2.000, 4.000)’

10 0.939 0.245 0.986 0.943 1.562e-05 (10.000, 2.000, 2.000, -3.000, -1.000, -2.001, 1.000, 2.002, 2.001, 3.999)’
20 0.906 0.239 0.965 0.943 2.197e-05 (10.001, 2.000, 2.000, -3.000, -1.000, -1.999, 1.001, 1.998, 1.998, 3.996)’
30 0.843 0.233 0.947 0.935 2.156e-05 (10.001, 2.000, 2.000, -3.000, -1.000, -1.999, 1.000, 1.999, 2.000, 4.000)’
50 0.661 0.222 0.912 0.926 1.534e-05 (9.996, 2.000, 2.001, -3.001, -1.000, -1.997, 1.003, 2.005, 2.004, 4.004)’
100 0.133 0.198 0.830 0.899 1.121e-05 (10.000, 1.999, 2.000, -3.001, -1.000, -1.998, 1.001, 2.001, 1.999, 4.002)’

Table 3: Inference for β and σ2 for PIS data with n = 10000

σ2 β
avg est Bayes avg est Bayes

δ cvg len est cvg vol est
0.2 0.947 0.078 1.000 0.945 1.811e-10 (10.000, 2.000, 2.000, -3.000, -1.000, -2.001, 1.000, 1.999, 2.000, 4.000)’
0.5 0.949 0.078 1.000 0.950 1.938e-10 (10.000, 2.000, 2.000, -3.000, -1.000, -2.001, 1.000, 2.000, 2.000, 4.001)’
0.8 0.950 0.078 1.001 0.951 2.032e-10 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 1.001, 2.001, 2.000, 4.001)’
1 0.948 0.078 1.000 0.951 2.100e-10 (10.000, 2.000, 2.000, -3.000, -2.000, -2.000, 1.000, 2.000, 2.000, 3.999)’
2 0.950 0.078 1.000 0.950 2.001e-10 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 1.000, 2.000, 2.001, 4.000)’
3 0.949 0.078 1.000 0.947 2.087e-10 (9.999, 2.000, 2.000, -3.000, -1.000, -1.999, 1.001, 2.001, 2.000, 4.001)’
4 0.951 0.078 1.000 0.949 2.054e-10 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 1.000, 2.001, 2.000, 4.000)’

10 0.947 0.078 0.999 0.952 1.925e-10 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 1.001, 2.000, 2.000, 4.001)’
20 0.946 0.078 0.997 0.951 1.898e-10 (10.000, 2.000, 3.000, -3.000, -1.000, -1.999, 1.001, 2.001, 2.000, 4.001)’
30 0.944 0.078 0.995 0.948 1.912e-10 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 1.000, 2.000, 2.000, 4.000)’
50 0.927 0.078 0.991 0.944 1.828e-10 (10.000, 2.000, 2.000, -3.000, -1.000, -1.999, 1.000, 2.000, 2.001, 4.000)’
100 0.823 0.077 0.981 0.946 1.612e-10 (10.000, 2.000, 2.000, -3.000, -1.000, -1.999, 1.000, 2.000, 2.001, 4.001)’
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Table 4: Inference for β and σ2 for PPS data with α = 2, n = 500

σ2 β
avg est Bayes avg est Bayes

δ cvg len est cvg vol est
0.2 0.955 0.443 1.017 0.951 7.190e-04 (10.003, 2.001, 2.000, -3.001, -1.000, -2.004, 0.995, 1.999, 1.997, 3.997)’
0.5 0.955 0.441 1.015 0.949 5.615e-03 (9.996, 2.001, 2.000, -3.000, -1.000, -1.997, 1.005, 2.004, 2.004, 4.005)’
0.8 0.949 0.441 1.013 0.946 5.364e-03 (10.000, 1.999, 2.000, -2.998, -1.001, -1.996, 0.999, 2.001, 1.999, 3.999)’
1 0.947 0.441 1.013 0.949 5.072e-03 (9.999, 2.000, 2.000, -3.000, -0.999, -1.998, 1.000, 2.001, 2.000, 4.000)’
2 0.944 0.438 1.006 0.950 4.864e-03 (10.001, 2.000, 2.000, -3.000, -1.000, -1.996, 0.998, 1.999, 2.002, 3.998)’
3 0.951 0.435 1.000 0.946 6.296e-03 (9.998, 2.001, 2.000, -3.000, -0.999, -2.000, 1.000, 1.999, 1.999, 4.002)’
4 0.948 0.432 0.994 0.952 8.090e-03 (10.001, 1.999, 2.000, -2.999, -1.001, -1.998, 1.000, 2.002, 2.002, 3.999)’
10 0.927 0.415 0.958 0.940 5.257e-03 (10.002, 2.000, 2.000, -3.001, -0.998, -2.005, 0.998, 1.996, 1.995, 3.997)’
20 0.818 0.389 0.901 0.929 5.398e-03 (9.998, 2.000, 2.000, -2.999, -1.000, -2.002, 1.000, 2.002, 2.003, 4.003)’
30 0.638 0.366 0.848 0.919 3.985e-03 (10.001, 2.000, 2.000, -3.000, -1.000, -1.998, 0.999, 1.998, 1.997, 3.996)’
50 0.232 0.323 0.752 0.891 2.997e-03 (10.001, 2.001, 2.001, -3.000, -1.000, -2.002, 0.999, 1.996, 1.998, 3.998)’

100 4e-04 0.239 0.559 0.805 1.247e-03 (9.998, 2.001, 2.000, -3.000, -1.000, -1.997, 1.003, 2.002, 2.003, 4.003)’

Table 5: Inference for β and σ2 for PPS data with α = 2, n = 1000

σ2 β
avg est Bayes avg est Bayes

δ cvg len est cvg vol est
0.2 0.950 0.308 1.009 0.947 2.381e-04 (10.000, 2.001, 2.000, -3.000, -1.000, -1.999, 1.003, 1.999, 2.002, 4.004)’
0.5 0.947 0.308 1.008 0.951 1.560e-04 (10.000, 2.000, 2.000, -3.000, -1.000, -2.003, 1.001, 2.001, 2.000, 4.000)’
0.8 0.949 0.308 1.007 0.953 1.782e-04 (10.005, 1.999, 1.999, -3.000, -1.001, -2.002, 0.995, 1.997, 1.997, 3.996)’
1 0.945 0.308 1.007 0.949 1.602e-04 (10.000, 2.000, 2.000, -3.000, -1.000, -2.002, 0.999, 2.001, 2.002, 4.000)’
2 0.950 0.307 1.004 0.949 1.479e-04 (9.999, 2.000, 2.000, -3.000, -1.000, -2.000, 0.999, 1.999, 1.999, 4.003)’
3 0.951 0.306 1.000 0.950 2.086e-04 (9.999, 2.001, 2.000, -3.000, -1.000, -2.003, 0.998, 2.001, 2.001, 3.998)’
4 0.949 0.304 0.996 0.952 1.674e-04 (9.999, 2.000, 2.000, -3.000, -1.000, -1.999, 1.001, 2.001, 2.003, 4.006)’

10 0.937 0.299 0.979 0.944 1.424e-04 (9.999, 2.000, 2.000, -2.999, -1.000, -2.001, 1.000, 2.001, 2.001, 3.999)’
20 0.885 0.289 0.949 0.935 1.091e-04 (10.000, 2.000, 2.000, -3.000, -1.000, -2.002, 0.999, 2.000, 1.998, 3.998)’
30 0.796 0.280 0.921 0.937 1.361e-04 (10.002, 2.000, 2.000, -3.000, -1.000, -1.999, 1.000, 2.001, 2.001, 4.001)’
50 0.521 0.263 0.867 0.922 1.195e-04 (10.000, 2.000, 2.000, -3.000, -1.001, -2.000, 1.000, 2.000, 2.000, 4.000)’
100 0.030 0.226 0.749 0.893 8.032e-05 (10.001, 2.000, 2.000, -2.999, -1.001, -2.004, 1.000, 1.998, 2.000, 3.999)’

Table 6: Inference for β and σ2 for PPS data with α = 2, n = 10000

σ2 β
avg est Bayes avg est Bayes

δ cvg len est cvg vol est
0.2 0.951 0.096 1.001 0.948 1.536e-09 (10.000, 2.000, 2.000, -3.000, -1.000, -1.999, 1.000, 2.000, 2.000, 4.001)’
0.5 0.954 0.096 1.001 0.953 1.519e-09 (9.999, 2.000, 2.000, -3.000, -1.000, -1.999, 1.001, 2.000, 2.000, 4.000)’
0.8 0.952 0.096 1.001 0.950 1.522e-09 (10.000, 2.000, 2.000, -3.000, -1.000, -2.002, 0.999, 2.000, 1.999, 4.000)’
1 0.949 0.096 1.000 0.952 1.541e-09 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 1.000, 2.000, 2.000, 4.001)’
2 0.951 0.096 1.001 0.945 1.546e-09 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 1.000, 2.000, 2.000, 4.000)’
3 0.952 0.096 1.000 0.951 1.524e-09 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 1.000, 2.000, 2.001, 4.000)’
4 0.949 0.096 1.000 0.950 1.589e-09 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 1.000, 2.001, 2.001, 4.001)’

10 0.948 0.096 0.998 0.950 1.592e-09 (10.001, 2.000, 2.000, -3.000, -1.000, -2.001, 1.000, 2.000, 2.000, 3.999)’
20 0.945 0.096 0.995 0.946 1.500e-09 (9.999, 2.000, 2.000, -3.000, -1.000, -1.999, 1.000, 2.000, 2.000, 4.000)’
30 0.935 0.095 0.992 0.946 1.557e-09 (10.000, 2.000, 2.000, -3.000, -1.000, -2.001, 1.000, 2.000, 2.000, 3.999)’
50 0.910 0.095 0.986 0.946 1.466e-09 (10.000, 2.000, 2.000, -3.000, -1.000, -1.999, 1.000, 2.000, 2.000, 4.001)’
100 0.773 0.093 0.972 0.942 1.512e-09 (10.000, 2.000, 2.000, -3.000, -1.000, -2.001, 0.999, 2.000, 2.000, 4.000)’
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Table 7: Inference for β and σ2 for PPS data with α = 50, n = 500

σ2 β
avg est Bayes avg est Bayes

δ cvg len est cvg vol est
0.2 0.951 0.436 1.017 0.949 4.017e-03 (10.002, 2.000, 2.000, -3.000, -1.000, -1.998, 1.000, 1.999, 1.998, 3.999)’
0.5 0.952 0.435 1.014 0.953 4.325e-03 (10.000, 2.001, 2.000, -3.000, -0.999, -2.004, 1.000, 1.997, 1.996, 3.994)’
0.8 0.947 0.433 1.011 0.945 5.193e-03 (10.002, 1.999, 1.999, -3.000, -0.999, -2.003, 1.000, 1.999, 1.998, 4.001)’
1 0.953 0.433 1.009 0.953 4.016e-03 (9.998, 2.000, 2.001, -2.999, -1.001, -2.002, 1.001, 1.997, 2.000, 4.004)’
2 0.949 0.431 1.006 0.947 6.528e-03 (10.002, 2.000, 2.000, -3.000, -1.001, -2.001, 1.000, 1.996, 2.000, 4.000)’
3 0.949 0.428 0.999 0.949 5.483e-03 (10.001, 1.999, 2.000, -2.999, -0.999, -2.003, 0.998, 1.999, 1.998, 4.001)’
4 0.944 0.425 0.994 0.949 4.120e-03 (9.998, 2.001, 2.000, -3.000, -1.000, -1.999, 0.999, 1.997, 2.000, 4.003)’
10 0.920 0.409 0.959 0.938 4.192e-03 (10.002, 2.000, 2.000, -3.000, -1.002, -2.001, 1.000, 2.001, 1.999, 3.999)’
20 0.822 0.385 0.904 0.931 4.663e-03 (9.998, 2.000, 2.000, -3.000, -1.000, -1.997, 1.004, 2.001, 2.002, 4.001)’
30 0.640 0.361 0.852 0.919 3.832e-03 (10.001, 1.999, 2.000, -3.001, -1.000, -2.000, 0.999, 1.998, 2.000, 4.007)’
50 0.254 0.321 0.761 0.891 2.084e-03 (9.996, 2.001, 2.000, -3.000, -1.000, -1.995, 1.006, 2.005, 2.002, 4.003)’

100 4e-04 0.239 0.571 0.809 9.473e-04 (10.001, 2.000, 2.000, -3.001, -1.000, -1.999, 0.998, 1.999, 2.001, 3.996)’

Table 8: Inference for β and σ2 for PPS data with α = 50, n = 1000

σ2 β
avg est Bayes avg est Bayes

δ cvg len est cvg vol est
0.2 0.947 0.306 1.010 0.951 1.405e-04 (10.000, 2.000, 2.000, -3.000, -1.001, -2.004, 1.001, 2.000, 1.998, 3.999)’
0.5 0.948 0.305 1.007 0.950 1.726e-04 (10.002, 2.000, 2.000, -3.001, -1.000, -2.002, 0.997, 1.999, 1.999, 3.999)’
0.8 0.949 0.305 1.007 0.948 1.417e-04 (9.998, 2.000, 2.000, -2.999, -1.000, -1.999, 1.001, 1.999, 1.999, 3.999)’
1 0.953 0.305 1.005 0.945 1.535e-04 (10.000, 1.999, 2.000, -3.000, -1.000, -1.999, 1.001, 2.003, 2.001, 4.000)’
2 0.949 0.304 1.003 0.951 1.675e-04 (9.998, 2.000, 2.000, -3.000, -1.000, -2.001, 1.001, 2.002, 2.002, 4.003)’
3 0.947 0.303 1.000 0.948 1.135e-04 (10.002, 2.000, 2.000, -3.001, -1.001, -1.999, 1.001, 2.000, 2.003, 3.990)’
4 0.949 0.302 0.998 0.949 1.703e-04 (10.000, 2.000, 2.000, -3.000, -1.000, -1.997, 1.002, 2.001, 2.001, 4.000)’

10 0.936 0.297 0.980 0.947 1.364e-04 (10.002, 1.999, 2.000, -3.000, -1.001, -1.999, 0.999, 1.999, 2.000, 4.001)’
20 0.882 0.287 0.951 0.937 1.186e-04 (9.998, 2.001, 2.000, -3.000, -1.001, -1.996, 1.005, 2.002, 2.005, 4.002)’
30 0.791 0.278 0.922 0.933 1.424e-04 (10.000, 2.000, 2.000, -2.999, -1.000, -2.000, 1.000, 1.997, 2.000, 3.998)’
50 0.535 0.262 0.871 0.924 8.791e-05 (10.001, 2.000, 2.000, -3.000, -1.000, -2.003, 1.000, 1.999, 1.999, 4.003)’
100 0.034 0.225 0.752 0.888 4.545e-05 (9.999, 2.000, 2.000, -3.000, -1.000, -1.999, 1.000, 2.000, 2.002, 3.997)’

Table 9: Inference for β and σ2 for PPS data with α = 50, n = 10000

σ2 β
avg est Bayes avg est Bayes

δ cvg len est cvg vol est
0.2 0.953 0.096 1.001 0.950 1.484e-09 (10.000, 2.000, 2.000, -3.000, -1.000, -2.001, 1.000, 1.999, 1.999, 3.999)’
0.5 0.947 0.096 1.001 0.950 1.622e-09 (10.000, 2.000, 2.000, -3.000, -1.000, -1.999, 1.000, 2.001, 2.000, 4.000)’
0.8 0.950 0.096 1.001 0.950 1.464e-09 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 1.001, 2.000, 2.000, 4.001)’
1 0.947 0.096 1.001 0.952 1.604e-09 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 0.999, 2.000, 2.000, 4.000)’
2 0.948 0.096 1.000 0.950 1.395e-09 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 1.000, 1.998, 1.999, 3.999)’
3 0.952 0.096 1.000 0.951 1.419e-09 (10.000, 2.000, 2.000, -3.000, -1.000, -1.999, 1.001, 2.000, 2.001, 4.000)’
4 0.946 0.096 1.000 0.949 1.382e-09 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 1.000, 2.001, 3.000, 4.000)’

10 0.949 0.096 0.998 0.951 1.318e-09 (10.001, 2.000, 2.000, -3.000, -1.000, -2.000, 0.999, 2.000, 1.999, 3.999)’
20 0.940 0.095 0.994 0.948 1.449e-09 (9.999, 2.000, 2.000, -3.000, -1.000, -2.000, 1.000, 2.001, 2.000, 4.000)’
30 0.935 0.095 0.992 0.946 1.519e-09 (10.000, 2.000, 2.000, -3.000, -1.000, -1.999, 1.000, 2.000, 2.001, 4.000)’
50 0.909 0.095 0.986 0.950 1.437e-09 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 1.000, 2.000, 2.001, 4.000)’
100 0.773 0.093 0.971 0.944 1.376e-09 (10.000, 2.000, 2.000, -3.000, -1.000, -2.000, 1.000, 2.000, 2.000, 4.001)’
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(a) σ2 (PIS) (b) β (PIS)

(c) σ2, α = 2 (PPS) (d) β, α = 2 (PPS)

(e) σ2, α = 50 (PPS) (f) β, α = 50 (PPS)

Figure 1: Variation in coverage of β and σ2 with respect to δ for SI MLR data
(−·−·− n = 500, — n = 1000, −−− n = 10000)



5 Partially Sensitive Data
We have assumed so far that all the n observations y = (y1, . . . , yn)′ in the multiple linear regres-
sion model are sensitive. Of course, this need not be the case, and quite generally we can partition
y into two parts: y1 and y2 of dimensions r and (n − r), respectively, and assume that the first r
observations y1 are sensitive, thus requiring privacy protection, and the remaining (n − r) observa-
tions y2 are non-sensitive, and can remain unprotected. Let X = [X ′

1X
′
2]′ be the corresponding

partitioning of the matrix X , so that X1 and X2 are of dimensions r × p and (n − r) × p, respec-
tively. The reasons for some of the y-values being sensitive can vary depending on the context. For
example, for income data, large incomes (extreme values) may be sensitive. The sensitive nature
of y may also depend on the (extreme) values of the corresponding covariates x. We outline below
two data analysis procedures when the latter situation holds, namely, the sensitivity of the first r
values of y is due to the nature of the covariates, which makes r a non-random integer.

Method I: Using only estimates of sensitive part to impute synthetic data

Plug-In Sampling

We propose to synthesize the r sensitive y-values y1 by applying the plug-in sampling method
based on these r y-values, as discussed in Section 2. The reason for using only the sensitive part
of the data for imputing synthetic data is to ensure that in the released data the synthetic part
and the non-sensitive part are independent. The synthetic version of y1 is y∗1 = (y∗1, . . . , y

∗
r)′ such

that y∗i ∼ N(x′ib1, σ̂1) generated independently for i = 1, . . . , r, where b1 = (X ′
1X1)−1X ′

1y1 and
RSS1 = y′1(Ir − PX1)y1 are the sufficient statistics of y1, and σ̂2

1 = RSS1/(r − p). We assume
that r > p and n − r > p so that we can draw valid inference about the p regression coefficients β
separately for each data set. Thus similarly, b2 = (X ′

2X2)−1X ′
2y2 and RSS2 = y′2(In−r − PX2)y2

are the sufficient statistics of y2. The released data is y∗ = (y∗1
′,y2

′)′. Then by Lemma 1.1 the
sufficient statistics for the imputed data are

b∗1 = (X ′
1X1)−1X ′

1y
∗
1

d
= b1 + σ̂1C1U0

d
= β + σ

√
1 + ψC1U1

RSS∗1 = y∗
′

1 (Ir − PX1)y
∗
1

d
= σ̂2

1W
′
1(Ir − PX1)W1

d
= σ2ψV1

where U0,U1 ∼ Np(0, Ip) independently, C1C
′
1 = (X ′

1X1)−1, ψ = (σ̂1/σ)2 is a latent quantity,
W1 ∼ Nr(0, Ir) and V1 ∼ χ2

r−p. Now suppose we represent b∗1 = By∗1, RSS∗1 = y∗
′

1 Ay
∗
1 and

y∗1 ∼ Nr(X1β̂1,Σ), then b∗1 is independent of RSS∗1 sinceBΣA = σ̂2
1(X ′

1X1)−1X ′
1(Ir−PX1) = O.

Thus the likelihood based on the released data for the parameters θ = (β, σ2, ψ) is given by

L(β, σ2, ψ | b∗1,RSS∗1,y2) = φp(b∗1;β, σ2(1+ψ)(X ′
1X1)−1) h(RSS∗1; r−p, σ2ψ) φn−r(y2;X2β, σ

2In−r)

The prior distribution on the parameters is given by for δ > 0

π(β, σ2, ψ) = π(β)π(σ2)π(ψ) ∝ (σ2)−
δ+1

2 ψ
r−p

2 −1e
−(r−p)ψ

2
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The posterior distribution can be computed in the following manner:

π(β, σ2, ψ | b∗1,RSS∗1,y2) ∝ L(β, σ2, ψ | b∗1,RSS∗1,y2) π(ψ) π(β, σ2)

π(β, σ2, ψ | b∗1,RSS∗1,y2) = π(β | b∗1,RSS∗1,y2, σ
2, ψ) π(σ2 | b∗1,RSS∗1,y2, ψ) π(ψ | b∗1,RSS∗1,y2)

The conditional posteriors are as follows

β | σ2, ψ, b∗1, b2 ∼ Np

(X ′
1X1

1 + ψ
+X ′

2X2

)−1 (
X ′

1X1

1 + ψ
b∗1 +X ′

2X2b2

)
, σ2

(
X ′

1X1

1 + ψ
+X ′

2X2

)−1
σ2 | ψ, b∗1,RSS∗1, b2,RSS2 ∼ Scale-inv-χ2

[
n − p + δ − 1,

1
n − p + δ − 1

(
RSS∗1
ψ

+ RSS2+(
b∗1 − b2

)′ ((1 + ψ)
(
X ′

1X1
)−1

+
(
X ′

2X2
)−1

)−1 (
b∗1 − b2

))]

π(ψ | b∗1,RSS∗1, b2,RSS2) ∝

∣∣∣∣∣∣X ′
1X1

1 + ψ
+X ′

2X2

∣∣∣∣∣∣−
1
2

(1 + ψ)−
p
2ψ−1e−

(r−p)ψ
2

×

{(
b∗1 − b2

)′ ((1 + ψ)
(
X ′

1X1
)−1

+
(
X ′

2X2
)−1

)−1 (
b∗1 − b2

)
+

RSS∗1
ψ

+ RSS2

}− n−p+δ−1
2

We see that the expressions match the case when all of y is sensitive as in Section 2 by deleting all
quantities involving y2, X2; replacing X1 by X , b∗1 by b∗ and r by n. The posterior distributions
are proper as long as r > p, n > max{r + p, p − δ + 1}.

Now as π(ψ) (we use this shorthand from here on) is a non-standard pdf, we devise a sampling
scheme below using the Accept-Reject method. Let us denote

Q(ψ) =
(
b∗1 − b2

)′ ((1 + ψ)
(
X ′

1X1
)−1

+
(
X ′

2X2
)−1

)−1 (
b∗1 − b2

)
+

RSS∗1
ψ

+ RSS2

X ′Xψ =
X ′

1X1

1 + ψ
+X ′

2X2

We notice that, if we had started with only the sole assumption r > p, sinceX ′Xψ > 0 ∀ψ > 0 (as
it is a covariance matrix), then letting ψ→ ∞ would yield X ′

2X2 > 0 and thus n − r > p, necessi-
tating both of those assumptions in the first place. Now turning our attention to Q(ψ), we see that
Q(ψ) > 0 ∀ψ > 0 by definition and also by design. Since the r.v.’s (b∗1, b2,RSS∗1,RSS2) embroiled
in the expression of Q(ψ) are mutually independent, Q(ψ) > 0 even when RSS∗1 is arbitrarily small,
hence Q(ψ) ≥ RSS∗1

ψ
. This coupled with the fact thatX ′Xψ >

X′X
1+ψ

=⇒
∣∣∣X ′Xψ

∣∣∣ > (1+ψ)−
p
2 |X ′X |

(as A > B =⇒ λi(A) > λi(B) ∀ i = 1, . . . , n where {λi(A) : i = 1, . . . , n} and {λi(B) : i = 1, . . . , n}
are the ordered eigenvalues of n × n PD matrices A and B respectively) produces π(ψ) ≤ Lg(ψ)
where

L =
|X ′X |−

1
2 2n−p+δ−1Γ

(
n−p+δ−1

2

)
(
(r − p)RSS∗1

) n−p+δ−1
2

and g(ψ) is the pdf of a
χ2

n−p+δ−1

r−p ≡ Γ
(

n−p+δ−1
2 , r−p

2

)
r.v.
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Algorithm for sampling from π(ψ):

1. We have the i-th sample ψ(i).

2. Draw a sample ψ′ ∼ g(ψ) where g(ψ) ∼
χ2

n−p+δ−1

r−p and also draw u ∼ U[0, 1].

3. If u ≤
π(ψ)

Lg(ψ)
then ψ(i+1) = ψ′, else discard ψ′ and go back to Step 2.

Theorem 5.1. The joint pdf of (b∗1,RSS∗1, b2,RSS2) is given by

fβ,σ2(b∗1,RSS∗1, b2,RSS2)

∝

∫ ∞

0
φp

β;
(
X ′

1X1

1 + ψ
+X ′

2X2

)−1 (
X ′

1X1

1 + ψ
b∗1 +X ′

2X2b2

)
, σ2

(
X ′

1X1

1 + ψ
+X ′

2X2

)−1
×

(RSS∗1)
r−p

2 −1(RSS2)
n−r−p

2 −1

(σ2)
n−p

2

e
− 1

2σ2

[
(b∗1−b2)′

(
(1+ψ)(X′1X1)−1

+(X′2X2)−1
)−1

(b∗1−b2) +
RSS∗1
ψ +RSS2

]

×

∣∣∣∣∣∣X ′
1X1

1 + ψ
+X ′

2X2

∣∣∣∣∣∣−
1
2

(1 + ψ)−
p
2ψ−1e−

(r−p)ψ
2 dψ

Posterior Predictive Sampling

We similarly synthesize r sensitive y-values y1 by applying the posterior predictive sampling
method based on these r y-values, as discussed in Section 3. The synthetic version of y1 is
y∗1 = (y∗1, . . . , y

∗
r)′ such that y∗i ∼ N(x′iβ

∗
1, σ

∗2
1 ) generated independently for i = 1, . . . , r, where

following from equations (12) and (13), (β∗1, σ
∗2
1 ) are drawn from the imputed posterior

σ2
1 | b1,RSS1 ∼ Scale-inv-χ2

(
r − p + α − 1,

RSS1

r − p + α − 1

)
β1 | b1,RSS1, σ

2
1 ∼ Np

(
b1, σ

2
1(X ′

1X1)−1
)

where we assume throughout that r + α > p + 1.
Then the sufficient statistics for the imputed data are

b∗1
d
= (X ′

1X1)−1X ′
1y
∗
1 = β∗1 + σ∗1C1U0 = β + σ

√
1 + 2ψC1U1

RSS∗1
d
= y∗

′

1 (Ir − PX1)y
∗
1 = σ∗21 W

′
1(Ir − PX1)W1 = σ2ψV1

where U0,U1 ∼ Np(0, Ip) independently, C1C
′
1 = (X ′

1X1)−1, ψ = (σ∗1/σ)2 is a latent quantity,
W1 ∼ Nr(0, Ir) and V1 ∼ χ

2
r−p. Next we can basically adapt the same procedure as before to obtain

the conditional posteriors as follows

β | σ2, ψ, b∗1, b2 ∼ Np

(X ′
1X1

1 + 2ψ
+X ′

2X2

)−1 (
X ′

1X1

1 + 2ψ
b∗1 +X ′

2X2b2

)
, σ2

(
X ′

1X1

1 + 2ψ
+X ′

2X2

)−1
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σ2 | ψ, b∗1,RSS∗1, b2,RSS2 ∼ Scale-inv-χ2
[
n − p + δ − 1,

1
n − p + δ − 1

(
RSS∗1
ψ

+ RSS2 +(
b∗1 − b2

)′ ((1 + 2ψ)
(
X ′

1X1
)−1

+
(
X ′

2X2
)−1

)−1 (
b∗1 − b2

))]

π(ψ | b∗1,RSS∗1, b2,RSS2) ∝

∣∣∣∣∣∣X ′
1X1

1 + 2ψ
+X ′

2X2

∣∣∣∣∣∣−
1
2

(1 + 2ψ)−
p
2 (1 + ψ)−

2r−2p+α−1
2 ψ−1

×

{(
b∗1 − b2

)′ ((1 + 2ψ)
(
X ′

1X1
)−1

+
(
X ′

2X2
)−1

)−1 (
b∗1 − b2

)
+

RSS∗1
ψ

+ RSS2

}− n−p+δ−1
2

The posterior distributions are proper as long as r > max
{
p, p − α + 1, n+p−α+δ

2

}
, n > max{r+ p, p−

δ + 1} and the expressions align as well with our results in Section 3 when r = n.

Algorithm for sampling from π(ψ):

1. We have the i-th sample ψ(i).

2. Draw a sample ψ′ ∼ g(ψ) where g(ψ) ∼ β′
(

n−p+δ−1
2 , 2r−n−p+α−δ

2

)
and also draw u ∼ U[0, 1].

This necessitates the assumption 2r + α > n + p + δ.

3. If u ≤
π(ψ)

Lg(ψ)
then ψ(i+1) = ψ′, else discard ψ′ and go back to Step 2. Here

L =
|X ′X |−

1
2 B

(
n−p+δ−1

2 , 2r−n−p+α−δ

2

)
(
RSS∗1

) n−p+δ−1
2

where B(a, b) is the Beta function.

Theorem 5.2. The joint pdf of (b∗1,RSS∗1, b2,RSS2) is given by

fβ,σ2(b∗1,RSS∗1, b2,RSS2)

∝

∫ ∞

0
φp

β;
(
X ′

1X1

1 + 2ψ
+X ′

2X2

)−1 (
X ′

1X1

1 + 2ψ
b∗1 +X ′

2X2b2

)
, σ2

(
X ′

1X1

1 + 2ψ
+X ′

2X2

)−1
×

(RSS∗1)
r−p

2 −1(RSS2)
n−r−p

2 −1

(σ2)
n−p

2

e
− 1

2σ2

[
(b∗1−b2)′

(
(1+2ψ)(X′1X1)−1

+(X′2X2)−1
)−1

(b∗1−b2) +
RSS∗1
ψ +RSS2

]

×

∣∣∣∣∣∣X ′
1X1

1 + 2ψ
+X ′

2X2

∣∣∣∣∣∣−
1
2

(1 + 2ψ)−
p
2 (1 + ψ)−

2r−2p+α−1
2 ψ−1 dψ
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Method II: Using whole data estimates to impute synthetic data

Plug-In Sampling

We can relax the assumption n − r > p needed before if we use estimates of the entire data to
impute the r sensitive y-values y1. In that case, the synthetic version of y1 is y∗1 = (y∗1, . . . , y

∗
r)′

such that y∗i ∼ N(x′ib,RSS) generated independently for i = 1, . . . , r and y2 is defined as before.
The likelihood of the released data is proportional to what follows below, since we only retain
quantities containing parameters (β, σ2) necessary for posterior distribution calculation, also using
the fact that y2 | b,RSS is independent of (β, σ2) by the definition of sufficient statistic

π(y∗1,y2 | β, σ
2)

=

∫
π(y∗1,y2 | b,RSS) π(b,RSS | β, σ2) db dRSS

=

∫
π(y∗1 | y2, b,RSS) π(y2 | b,RSS) π(b,RSS | β, σ2) db dRSS

∝

∫
π(y∗1 | b,RSS) π(b | β, σ2) π(RSS | σ2) db dRSS

∝

∫
1

(σ2ψ)r/2 exp
[
−

1
2σ2ψ

(y∗1 −X1b)′(y∗1 −X1b)
]

×
1

(σ2)p/2 exp
[
−

1
2σ2 (b − β)′(X ′X)(b − β)

]
× ψ

n−p
2 −1e−

(n−p)ψ
2 db dψ (21)

The last line is due to a change in variable RSS/(n − p)σ2 = ψ. Next we collect terms for b as

1
ψ

(y∗1 −X1b)′(y∗1 −X1b) + (b − β)′X ′X(b − β)

= b′
(
X ′X +

X ′
1X1

ψ

)
b − 2b

(
X ′Xβ +

X ′
1y
∗
1

ψ

)
+

(y∗1)′y∗1
ψ

+ β′X ′Xβ

=

b − (
X ′X +

X ′
1X1

ψ

)−1 (
X ′Xβ +

X ′
1y
∗
1

ψ

)′ (X ′X +
X ′

1X1

ψ

)
b − (

X ′X +
X ′

1X1

ψ

)−1 (
X ′Xβ +

X ′
1y
∗
1

ψ

) +
(y∗1)′y∗1
ψ

+ β′X ′Xβ

−

(
X ′Xβ +

X ′
1y
∗
1

ψ

)′ (
X ′X +

X ′
1X1

ψ

)−1 (
X ′Xβ +

X ′
1y
∗
1

ψ

)
(22)

where we know X ′X +
X ′

1X1

ψ
is invertible because X ′X +

X ′
1X1

ψ
> 0 due to X ′X > 0,

X ′
1X1 > 0, ψ > 0. The last three quantities above simplify to

β′
X ′X −X ′X

(
X ′X +

X ′
1X1

ψ

)−1

X ′X

 − 2β′
X ′X

(
X ′X +

X ′
1X1

ψ

)−1 X ′
1y
∗
1

ψ
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+ (y∗1)′
Ir

ψ
−
X1

ψ

(
X ′X +

X ′
1X1

ψ

)−1 X ′
1

ψ

y∗1 (23)

from which it is clear that the (conditional) posterior variance of β is

X ′X −X ′X

(
X ′X +

X ′
1X1

ψ

)−1

X ′X > 0

⇐⇒ (X ′X)1/2

Ip − (X ′X)1/2
(
X ′X +

X ′
1X1

ψ

)−1

(X ′X)1/2

 (X ′X)1/2 > 0

⇐⇒ Ip > (X ′X)1/2
(
X ′X +

X ′
1X1

ψ

)−1

(X ′X)1/2

⇐⇒ (X ′X)−1 >

(
X ′X +

X ′
1X1

ψ

)−1

⇐⇒ X ′X +
X ′

1X1

ψ
>X ′X

⇐⇒
X ′

1X1

ψ
> 0 ∀ψ > 0 ⇐⇒ X ′

1X1 > 0 ⇐⇒ r > p

so that we still have to respect the condition r > p while employing this method. Thus (23) further
simplifies to

β′
[
(X ′X)−1 + ψ(X ′

1X1)−1
]−1
β − 2β′

[
(X ′X)−1 + ψ(X ′

1X1)−1
]−1
b∗1

+ (b∗1)′
[
(X ′X)−1 + ψ(X ′

1X1)−1
]−1
b∗1 +

(y∗1)′y∗1
ψ

− (b∗1)′
X ′

1X1

ψ
b∗1

= (β − b∗1)′
[
(X ′X)−1 + ψ(X ′

1X1)−1
]−1

(β − b∗1) +
(y∗1)′y∗1
ψ

− (y∗1)′
PX1PX1

ψ
y∗1

= (β − b∗1)′
[
(X ′X)−1 + ψ(X ′

1X1)−1
]−1

(β − b∗1) + (y∗1)′
(Ir − PX1)

ψ
y∗1

= (β − b∗1)′
[
(X ′X)−1 + ψ(X ′

1X1)−1
]−1

(β − b∗1) +
RSS∗1
ψ
y∗1 (24)

where b∗1 = (X ′
1X1)−1X ′

1y
∗
1, RSS∗1 = y′1(Ir − PX1)y1 are sufficient statistics for y∗1.

So integrating out b from (21) using (22) and (24) and multiplying by our usual prior π(β, σ2) ∝
(σ2)−

δ+1
2 we get the joint posterior distribution to be

π(β, σ2, ψ | y∗1,y2) ∝ φp

(
β; b∗1, σ

2
[
(X ′X)−1 + ψ(X ′

1X1)−1
])
×

(
RSS∗1/ψ

) r−p+δ−1
2

(σ2)
r−p+δ−1

2 +1
exp

[
RSS∗1
2σ2ψ

]

×
∣∣∣(X ′X)−1 + ψ(X ′

1X1)−1
∣∣∣ 1

2

∣∣∣∣∣∣X ′X +
X ′

1X1

ψ

∣∣∣∣∣∣−
1
2

ψ
n−r−p

2 −1e−
(n−p)ψ

2 ψ
r−p+δ−1

2

where after observing

∣∣∣(X ′X)−1 + ψ(X ′
1X1)−1

∣∣∣ 1
2

∣∣∣∣∣∣X ′X +
X ′

1X1

ψ

∣∣∣∣∣∣−
1
2

= ψ
p
2
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it leads us to the hierarchical (conditional) posterior distributions as follows

β | σ2, ψ, b∗1 ∼ Np

(
b∗1, σ

2
(
(X ′X)−1 + ψ(X ′

1X1)−1
))

σ2 | ψ,RSS∗1 ∼ Scale-inv-χ2
(
r − p + δ − 1,

RSS∗1
ψ(r − p + δ − 1)

)
ψ ∼

χ2
n−p+δ−1

n − p
≡ Γ

(
n − p + δ − 1

2
,

n − p
2

)
The posterior distributions are proper as long as r > max{p, p − δ + 1} and the expressions align
as well with our results from Section 2 when r = n. We notice that an advantage of this method is
that the sampling of ψ is straightforward.

Posterior Predictive Sampling

We synthesize y∗1 = (y∗1, . . . , y
∗
r)′ such that y∗i ∼ N(x′iβ

∗, σ∗2) generated independently for i =

1, . . . , r, where (β∗, σ∗2) are drawn from the imputed posterior given by equations (12) and (13).
The likelihood of the released data is given by

π(y∗1,y2 | β, σ
2)

=

∫
π(y∗1,y2 | β

∗, σ∗2, b,RSS) π(β∗, σ∗2 | b,RSS)) π(b,RSS | β, σ2) dβ∗ dσ∗2 db dRSS

∝

∫
π(y∗1 | β

∗, σ∗2) π(β∗ | σ∗2, b) π(σ∗2 | RSS) π(b | β, σ2) π(RSS | σ2) dβ∗ dσ∗2 db dRSS

∝

∫
1

(σ∗2)r/2 exp
[
−

1
2σ∗2

(y∗1 −X1β
∗)′(y∗1 −X1β

∗)
]

×
1

(σ∗2)p/2 exp
[
−

1
2σ∗2

(β∗ − b)′(X ′X)(β∗ − b)
]
×

exp
[
− RSS

2σ∗2

]
(RSS)

n−p+α−1
2

(σ∗2)
n−p+α+1

2

×
1

(σ2)p/2 exp
[
−

1
2σ2 (b − β)′(X ′X)(b − β)

]
×

exp
[
−RSS

2σ2

]
(RSS)

n−p
2 −1

(σ2)
n−p

2

dβ∗ dσ∗2 db dRSS

We begin by collecting terms for β∗ as

(y∗1 −X1β
∗)′(y∗1 −X1β

∗) + (β∗ − b)′(X ′X)(β∗ − b)
=β∗′

(
X ′X +X ′

1X1
)
β∗ − 2β∗

(
X ′Xb +X ′

1y
∗
1
)

+ (y∗1)′y∗1 + b′X ′Xb

=
(
β∗ −

(
X ′X +X ′

1X1
)−1 (

X ′Xb +X ′
1y
∗))′ (X ′X +X ′

1X1
) (
β∗ −

(
X ′X +X ′

1X1
)−1 (

X ′Xb +X ′
1y
∗
1
))

+ (y∗1)′y∗1 + b′X ′Xb −
(
X ′Xb +X ′

1y
∗
1
)′ (X ′X +X ′

1X1
)−1 (

X ′Xb +X ′
1y
∗
1
)

After integrating out β∗ the likelihood stands at∫
1

(σ∗2)
r
2

exp
[
−

1
2σ∗2

(
y∗1
′y∗1 + b′X ′Xb −

(
X1

′y∗1 +X ′Xb
)′ (X ′X +X ′

1X1
)−1 (

X1
′y∗1 +X ′Xb

))]
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×
exp

[
− RSS

2σ∗2

]
(σ∗2)

n−p+α+1
2

×
exp

[
−RSS

2σ2

]
(σ2)

n−p
2

× (RSS)
2n−2p+α−1

2 −1 ×
1

(σ2)
p
2

exp
[
−

1
2σ2 (b − β)′(X ′X)(b − β)

]
dσ∗2 db dRSS

Next we collect terms for b as follows

1
σ∗2

(
y∗1
′y∗1 + b′X ′Xb −

(
X1
′y∗1 +X ′Xb

)′ (
X ′X +X ′1X1

)−1 (
X1
′y∗1 +X ′Xb

))
+

1
σ2 (b − β)′(X ′X)(b − β)

= b′
[
(X ′X)

(
1
σ2 +

1
σ∗2

)
−
X ′X

σ∗2

(
X ′X +X ′1X1

)−1
X ′X

]
b − 2b′

[
X ′X

σ∗2

(
X ′X +X ′1X1

)−1
X1
′y∗1 +

X ′X

σ2 β

]
+

(y∗1)′y∗1
σ∗2

−
(y∗1)′

σ∗2
X1

(
X ′X +X ′1X1

)−1
X1
′y∗1 + β′

X ′X

σ2 β (25)

We can figure out what the variance-covariance matrix will be when we would integrate out b, and
thus by definition after a change of variable σ∗2/σ2 = ψ we have

(1 + ψ)X ′X −X ′X
(
X ′X +X ′

1X1
)−1X ′X > 0

⇐⇒ (1 + ψ) Ip > (X ′X)1/2 (
X ′X +X ′

1X1
)−1 (X ′X)1/2

⇐⇒ (1 + ψ) (X ′X)−1 >
(
X ′X +X ′

1X1
)−1

⇐⇒
X ′X

1 + ψ
<X ′X +X ′

1X1 ⇐⇒ X ′
1X1 +

ψ

1 + ψ
X ′X > 0

which is true for all values of ψ > 0. We let ψ→ 0 to getX ′
1X1 > 0, so r > p and

(1 + ψ)X ′X −X ′X
(
X ′X +X ′

1X1
)−1X ′X = ψX ′X +

((
X ′X

)−1
+

(
X ′

1X1
)−1

)−1

Here we use the following fact: for any two PD matricesA andB,

A−1 −A−1(A−1 +B−1)−1A−1 = A−1(A−1 +B−1)−1B−1 = (A +B)−1 (26)

Next we follow up from (25) to get, after taking out the common factor
1
σ2ψb − [

ψX ′X +

((
X ′X

)−1
+

(
X ′1X1

)−1
)−1

]−1 [
X ′X

(
X ′X +X ′1X1

)−1
X1
′y∗1 + ψX ′Xβ

]′[
ψX ′X +

((
X ′X

)−1
+

(
X ′1X1

)−1
)−1

]
b − [

ψX ′X +

((
X ′X

)−1
+

(
X ′1X1

)−1
)−1

]−1 [
X ′X

(
X ′X +X ′1X1

)−1
X1
′y∗1 + ψX ′Xβ

]
+ (y∗1)′y∗1 − (y∗1)′X1

(
X ′X +X ′1X1

)−1
X1
′y∗1 + ψβ′X ′Xβ −[

X ′X
(
X ′X +X ′1X1

)−1
X1
′y∗1 + ψX ′Xβ

]′ [
ψX ′X +

((
X ′X

)−1
+

(
X ′1X1

)−1
)−1

]−1

[
X ′X

(
X ′X +X ′1X1

)−1
X1
′y∗1 + ψX ′Xβ

]
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The last three lines give us by repeated application of (26)

β′
ψX ′X − ψX ′X [

ψX ′X +

((
X ′X

)−1
+

(
X ′1X1

)−1
)−1

]−1

ψX ′X

β
− 2β′

ψX ′X [
ψX ′X +

((
X ′X

)−1
+

(
X ′1X1

)−1
)−1

]−1

X ′X
(
X ′X +X ′1X1

)−1
X1
′X1

 b∗1
+ (y∗1)′(Ir − PX1)y∗1 + (b∗1)′

(
X ′1X1 −X

′
1X1

(
X ′X +X ′1X1

)−1
X1
′X1

)
(b∗1)′

− (b∗1)′X ′1X1
(
X ′X +X ′1X1

)−1
X ′X

[
ψX ′X +

((
X ′X

)−1
+

(
X ′1X1

)−1
)−1

]−1

X ′X
(
X ′X +X ′1X1

)−1
X1
′X1b

∗
1

=β′
(

1
ψ

(X ′X)−1 +
(
X ′X

)−1
+

(
X ′1X1

)−1
)−1

β − 2β′
(

1
ψ

(X ′X)−1 +
(
X ′X

)−1
+

(
X ′1X1

)−1
)−1

b∗1

+ RSS∗1 + (b∗1)′
(
(X ′X)−1 +

(
X ′1X1

)−1
)−1
b∗1

− (b∗1)′
(
(X ′X)−1 +

(
X ′1X1

)−1
)−1

[
ψX ′X +

((
X ′X

)−1
+

(
X ′1X1

)−1
)−1

]−1 (
(X ′X)−1 +

(
X ′1X1

)−1
)−1
b∗1

=
(
β − b∗1

)′ ( 1
ψ

(X ′X)−1 +
(
X ′X

)−1
+

(
X ′1X1

)−1
)−1 (

β − b∗1
)

+ RSS∗1 (27)

We integrate out b to find the likelihood to be∫
1

(σ2)
p
2

exp
[
−

1
2σ2

(
β − b∗1

)′ ((1 + ψ)(X ′X)−1 + ψ(X ′
1X1)−1

)−1 (
β − b∗1

)]

×
exp

[
−

RSS∗1
2σ2ψ

]
ψ

n+r−2p+α+1
2

×
exp

[
−RSS

2σ2

(
1 + 1

ψ

)]
(σ2)

2n+r−2p+α+1
2 −1

× (RSS)
2n−2p+α−1

2 −1

×(σ2)
p
2

∣∣∣∣ψX ′X +
((
X ′X

)−1
+

(
X ′

1X1
)−1

)−1∣∣∣∣− 1
2

dψ dRSS

Next integrating out RSS we have∫
1

(σ2)
p
2

exp
[
−

1
2σ2

(
β − b∗1

)′ ((1 + ψ)(X ′X)−1 + ψ(X ′
1X1)−1

)−1 (
β − b∗1

)]

×
exp

[
−

RSS∗1
2σ2ψ

]
ψ

n+r−2p+α+1
2

×

(
σ2ψ

1+ψ

) 2n−2p+α−1
2

(σ2)
2n+r−2p+α+1

2 −1

×(σ2)
p
2

∣∣∣∣ψX ′X +
((
X ′X

)−1
+

(
X ′

1X1
)−1

)−1∣∣∣∣− 1
2

dψ

Finally multiplying the integrand by our regular prior π(β, σ2) ∝ (σ2)−
δ+1

2 , we find that the product
breaks up into exactly three parts corresponding to the following posterior distributions
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β |σ2, ψ, b∗1 ∼ Np

(
b∗1, σ

2
(
(1 + ψ)(X ′X)−1 + ψ(X ′

1X1)−1
))

(28)

σ2 |ψ,RSS∗1 ∼ Scale-inv-χ2
(
r − p + δ − 1,

RSS∗1
ψ(r − p + δ − 1)

)
(29)

ψ ∼ β′
(
n − p + δ − 1

2
,

n − p + α − δ

2

)
(30)

The posterior distributions are proper as long as r > max{p, p − δ + 1, p − α + 1}, n > p − α + δ
and they match our results in Section 3 when r = n.

All the conditions for existence throughout this work can also be expressed as inequalities for
δ, since once we have the data at hand, that would enable us to choose a proper value of δ to get
the best inference.

Remark 5.1. We can think of an r based decision rule to analyze synthetic MLR data as follows. If
r < p we ignore the part of the data that is sensitive and base our analysis only on the non-sensitive
part. This makes sense in the light of our simulation data where n � p. If r > p, then we use
Method II (use whole data estimates to impute synthetic data). If r > p, n − r > p then we use
Method I (use sensitive part estimates to impute synthetic data). If r = n then we use our regular
methods of analyses outlined in Sections 2 and3.

6 Discussion
In this paper, we have developed model based Bayesian inference based on a singly imputed par-
tially synthetic dataset, generated via plug-in sampling, or posterior predictive sampling, under the
multiple linear regression model. The methods developed here have the desirable property that
they are exact, and based on sufficient statistics. Furthermore, these methods allow a data user to
draw valid inference when (perhaps due to privacy concerns or limitations in resources) a statis-
tical agency can only release a single synthetic dataset instead of multiple synthetic copies. The
simulation studies presented in Section 4 illustrate that these methods perform just as our theory
predicts. It should be noted that the methodology developed here is model based, and thus it does
not immediately generalize to cases that do not fall under the multiple linear regression model. In
other cases, such as when there are a mixture of continuous and categorical variables, it may very
well be possible to derive analogous methods for analyzing singly imputed partially synthetic data,
and we hope to pursue this problem in future work.

In what follows, we outline some directions for future research. We have used a non-informative
diffuse prior here, and it would be interesting to examine how the inference is affected by the choice
of other (non-informative) priors, probability matching priors, and also prions which are conjugate
in nature with a suitable choice of the hyperparameters so as not to affect data influence. The sim-
ulation results in Section 4 confirm our theoretical results. It is clear from the simulation results
in the preceding chapters that the coverage is a decreasing function of δ. It is desirable to express
the nature of this dependence exactly, or even within bounds. We would also like to apply this
methodology to real-life data to verify our results. We can also look into construction of highest
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posterior density (HPD) sets of the parameters discussed in various chapters of this dissertation.
This will necessitate a judicial choice of the cut-off points of the proposed credible sets.

In deriving the methodology of Sections 2 and 3, we have made assumptions about the process
that generated the original data, and about the mechanism used to create synthetic data. Indeed,
these assumptions are used to derive the Bayesian inference for singly imputed synthetic data. We
leave it as future work to explore the performance of our methodology when some of the conditions
do not hold (i.e., scenarios where the imputer and/or data analyst overfit or underfit the regression
model; and a scenario where the imputer’s model is the regression of y on x, but the data analyst’s
model is the regression of x on y). Another future research topic would be to consider extensions
of our methodology to non-ideal situations that frequently mar real life data (for e.g., non-normal
errors; y’s have unequal variances and/or are correlated; the original data are from a census, not a
sample; only part of y is sensitive; response and covariates are all sensitive; original data contain
missing observations and so on). We would like to point out that the case of partially sensitive data
has been addressed in Section 5.

Since one of our prime objectives is to provide valid inference while protecting privacy, we
would like to devise methods to quantify privacy in the synthetic data (for e.g., Disclosure Risk
Analysis as discussed in Klein and Sinha (2015b)) and observe the trade-off between quality of
inference and privacy of survey respondents. It is worth mentioning here that since the data gen-
erating methods are still the same as in the frequentist case, the disclosure risk is the same for the
cases considered here as in Klein and Sinha (2015a), Klein and Sinha (2015b), and Klein, Zylstra
and Sinha (2019).

An excellent new direction of research would be to go beyond the MLR model, and to de-
velop both frequentist and Bayesian analysis of singly and multiply imputed data under a GLM
framework; and also based on Noise Multiplied data.
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